Open Access
Issue
MATEC Web of Conferences
Volume 14, 2014
EUROSUPERALLOYS 2014 – 2nd European Symposium on Superalloys and their Applications
Article Number 09002
Number of page(s) 5
Section Session 9: Precipitation
DOI https://doi.org/10.1051/matecconf/20141409002
Published online 29 August 2014
  • J.R.H. May, M.C. Bache, M.R. Kaylor, and David D., Microstructure and Mechanical Properties of an Advanced Nickel-Based Superalloy in the as-HIP Form, Advanced Materials Research, 278 (2011) 265–270 [Google Scholar]
  • J.M. Silva, R.A. Cláudio, A. Sousa e Brito, C.M. Branco, J. Byrne, Characterization of Powder Metallurgy (PM) Nickel Base Superalloys for Aeronautical Applications, Materials Science Forum, 514–516 (2006) 495–499 [Google Scholar]
  • T.P.G. J. Gayda, and P. T. Kantzos, The effect of dual microstructure heat treatment on an advanced Nickel-base disk alloy, Superalloy 2004, (2004) 323–329 [Google Scholar]
  • R. Reed, The Superalloys Fundamentals and Applications Cambridge university press, Cambridge, 2006 [Google Scholar]
  • T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada, Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction, Acta Materialia, 52 (2004) 3737–3744 [Google Scholar]
  • M.P. Jackson, R.C. Reed, Heat treatment of UDIMET 720Li: the effect of microstructure on properties, Mater. Sci. Eng. A, 259 (1999) 85–97 [CrossRef] [Google Scholar]
  • R.C. Reed, The SuperAlloys Fundamentals and Applications Cambirdge University Press, Cambridge, 2006 [Google Scholar]
  • C.E. Campbell, W.J. Boettinger, U.R. Kattner, Development of a diffusion mobility database for Ni-base superalloys, Acta Materialia, 50 (2002) 775–792 [CrossRef] [Google Scholar]
  • B.S. Bokstein, S.Z. Bokstein, I.T. Spitsberg, Ni self-diffusion in alloyed Ni3Al, Intermetallics, 4 (1996) 517–523 [Google Scholar]
  • J. Cermak, A. Gazda, V. Rothova, Interdiffusion in ternary Ni3Al/Ni3Al-X diffusion couples with X=Cr, Fe, Nb and Ti, Intermetallics, 11 (2003) 939–946 [Google Scholar]
  • J. Cermak, V. Rothova, Concentration dependence of ternary interdiffusion coefficients in Ni3Al/Ni3Al–X couples with X=Cr, Fe, Nb and Ti, Acta Mater., 51 (2003) 4411–4421 [Google Scholar]
  • M. Karunaratne, P. Carter, R. Reed, On the diffusion of aluminium and titanium in the Ni-rich Ni–Al–Ti system between 900 and 1200 C, Acta Mater., 49 (2001) 861–875 [Google Scholar]
  • D. Blavette, A. Bostel, J. Sarrau, Atom-probe microanalysis of a nickel-base superalloy, Metall. Trans. A, 16 (1985) 1703–1711 [Google Scholar]
  • M. Watanabe, Z. Horita, M. Nemoto, Absorption correction and thickness determination using the ζ factor in quantitative X-ray microanalysis, Ultramicroscopy, 65 (1996) 187–198 [Google Scholar]
  • D. Williams, M. Watanabe, D. Carpenter, Thin Film Analysis and Chemical Mapping in the Analytical Electron Microscope, in: G. Love, W.A.P. Nicholson, A. Armigliato (Eds.) Modern Developments and Applications in Microbeam Analysis, Springer Vienna, 1998, pp. 49–57 [CrossRef] [Google Scholar]
  • M. Watanabe, D. Williams, The quantitative analysis of thin specimens: a review of progress from the Cliff-Lorimer to the new ζ-factor methods, J. Microsc.-Oxford, 221 (2006) 89–109 [CrossRef] [Google Scholar]
  • M. Preuss, P.J. Withers, J.W.L. Pang, G.J. Baxter, Inertia welding nickel-based superalloy: Part I. Metallurgical characterization, Metallurgical and Materials Transactions A, 33 (2002) 3215–3225 [CrossRef] [Google Scholar]
  • D. Mukherji, R. Müller, R. Gilles, P. Strunz, J. Rösler, G. Kostorz, Nanocrystalline Ni3Al-type intermetallic phase powder from Ni-base superalloys, Nanotechnology, 15 (2004) 648–657 [Google Scholar]
  • Y. Chen, T. Slater, E. Lewis, E. Francis, M.G. Burke, M. Preuss, S.J. Haigh, Measurement of size-dependent composition variations for gamma prime (γ′) precipitates in an commercial nickel-based superalloy, Under review, (2014) [Google Scholar]
  • N. Dupin, B. Sundman, A thermodynamic database for Ni-base superalloys, Scand. J. Metall., 30 (2001) 184–192 [Google Scholar]
  • I. Ansara, B. Sundman, P. Willemin, Thermodynamic modeling of ordered phases in the N-Al system, Acta Metall., 36 (1988) 977–982 [Google Scholar]
  • C. Jiang, B. Gleeson, Site preference of transition metal elements in Ni3Al, Scripta Mater., 55 (2006) 433–436 [Google Scholar]
  • M.K. Miller, J.A. Horton, Site occupation determinations by APFIM for Hf, Fe, and Co in Ni3Al, Scripta Mater. Metall., 20 (1986) 1125–1130 [Google Scholar]
  • D. Shindo, M. Kikuchi, M. Hirabayashi, S. Hanada, O. Izumi, Site determination of Fe, Co and Cr atoms added in Ni3Al by electron channeling enhanced microanalysis [J], Trans. JIM., 29 (1988) 956–961 [Google Scholar]
  • C. Booth-Morrison, Z. Mao, R.D. Noebe, D.N. Seidman, Chromium and tantalum site substitution patterns in Ni3Al(L12)γ′-precipitates, App. Phys. Lett., 93 (2008) 033103 [Google Scholar]
  • J. Robson, Modelling the evolution of particle size distribution during nucleation, growth and coarsening, Materials Science and Technology, 20 (2004) 441–448 [Google Scholar]
  • R.J. Braun, J.W. Cahn, G.B. McFadden, H.E. Rushmeier, A.A. Wheeler, Theory of anisotropic growth rates in the ordering of an f.c.c. alloy, Acta Mater., 46 (1998) 1–12 [Google Scholar]
  • P. Gopal, S.G. Srinivasan, First-principles study of self- and solute diffusion mechanisms in γ′-Ni3Al, Physical Review B, 86 (2012) 014112 [Google Scholar]