Open Access
Numéro
MATEC Web of Conferences
Volume 14, 2014
EUROSUPERALLOYS 2014 – 2nd European Symposium on Superalloys and their Applications
Numéro d'article 19001
Nombre de pages 6
Section Posters: Mechanical Behavior I: Fatigue
DOI https://doi.org/10.1051/matecconf/20141419001
Publié en ligne 29 août 2014
  • H.J. Christ, A. Jung, H.J. Maier, R. Teteruk, Thermo-mechanical fatigue – Damage mechanisms and mechanism-based life prediction methods. Sadhana, 28, 147–165, (2003) [Google Scholar]
  • H. Sehitoglu, H.J. Maier, Thermo-mechanical Fatigue Behaviour of Materials: ASTM STP, 3, 1371. (2000) [Google Scholar]
  • M. Sakaguchi, M. Okazaki, Thermo-mechanical and low cycle fatigues of single crystal Ni-base superalloys; Importance of microstructure for life prediction. JSME Journal, 49, 345–354 (2006) [Google Scholar]
  • J.J Pernot, T. Nicholas, S. Mall, Modelling thermo-mechanical fatigue crack growth rates in Ti-24Al-11Nb. Int J Fatigue, 16, 111–112 (1994) [CrossRef] [Google Scholar]
  • L.F. Coffin, Fatigue at Elevated Temperatures. ASTM STP, 520, 744–782 (1973) [Google Scholar]
  • S.S Manson, Fatigue – A complex subject – Some simple approximations. Exp Mech, 5, 193-226 (1965) [Google Scholar]
  • J.X. Zhang, H. Harada, Y. Koizumi, T. Kobayashi, Crack appearance of single-crystal nickel-base superalloys after thermomechanical fatigue failure. Scripta Mater, 61, 1105–1108 (2009) [CrossRef] [Google Scholar]
  • H. Kang, Y. Lee, J. Chen, J.D. Fan, Thermo-mechanical fatigue damage model for variable temperature and loading amplitude conditions. Int J Fatigue, 29, 1797–1802 (2007) [CrossRef] [Google Scholar]
  • M. Okazaki, T. Koizumi, Relationship of crack growth between thermal-mechanical and isothermal low-cycle fatigue at elevated temperatures. J Eng Mater T, 109, 114–118 (1987) [CrossRef] [Google Scholar]
  • E.H. Jordan, G.J. Meyers, Fracture mechanics applied to nonisothermal fatigue crack growth. Eng Fract Mech, 23, 345–358 (1986) [CrossRef] [Google Scholar]
  • ISO 12111:2011 – Metallic materials – Fatigue testing – Strain-controlled thermo mechanical fatigue testing method. BSI Standards Publication (2011) [Google Scholar]
  • P. Hahner, C. Rinaldi, V. Bicego, E. Affeldt, T. Brendel, H. Andersson, T. Beck, H. Klingelhoffer, H. Kuhn, A. Koster, M. Loveday, M. Marchionni, C. Rae, Research and development into a European code-of practice for strain-controlled thermo-mechanical fatigue testing. Int J Fatigue, 30, 372–381 (2007) [CrossRef] [Google Scholar]
  • K. Walker, Effects of environment and complex loading history on fatigue life. ASTM STP, 462, 1–14. (1970) [Google Scholar]
  • O.H. Basquin, The exponential law of endurance tests. ASTM, 10, 625–630 (1919) [Google Scholar]
  • W.J. Evans, J.E. Screech, S.J. Williams, Thermo-mechanical fatigue and fracture of INCO718. Int J Fatigue, 30, 257–267 (2008) [Google Scholar]
  • Z. Mroz, An attempt to describe the behaviour of metals under cyclic loads using a more general work-hardening model. Acta Mech, 7, 199–212 (1967) [CrossRef] [Google Scholar]
  • R.J. Lancaster, M.T. Whittaker, S.J. Williams, A review of thermo-mechanical fatigue behaviour in polycrystalline nickel superalloys for turbine disc applications. Mater High Temp, 30, 2–12 (2013) [CrossRef] [Google Scholar]